1.1. Guide to the review literature

The literature on shock compression of solids has grown dramatically over the past twenty years and the lack of a single comprehensive reference source to this field presents a formidable barrier to entry. Even the review literature is difficult to follow since both the range of subjects covered and the degree of detail presented in the numerous reviews are highly variable. Because the field has changed in technical content, depth, and emphasis, most material in reviews more than ten years old is dated.

Our background study of prior reviews resulted in a summary and evaluation that may prove useful to the reader. This work is presented in three tables. Table 1.1 covers broad, general reviews,

Table 1.1 General review articles

	No. of pages	No. of refs.	Topics covered								
Reference			Technique	Eq. of state	Viscous	Transition	Strength	Fracture	Electrical	Residual	Remarks
Rice et al. [58R1]	63	41	×	×		×	×				Classic first, most widely cited, dated
Duvall [61D2]	37	78		×		×	×				General, dated
Duvall and Fowles [63D3]	82	145	×	×	×	×	×	×		×	Comprehensive
McQueen [64M1]	86	64	×	×	×	×	×	×		×	Author's own work
Al'tshuler [65A2]	39	169	×	×		×	×	×			Soviet literature
Doran and Linde [66D3]	61	237				×			×	×	Broad, uncritical
McQueen et al. [70M1]	124	52	×	×	×	×	×	×			Authors' work, thorough
Jones [72J3]	23	32			×		×	×		×	Elementary
Murri et al. [74M3]	163	527	×	×	×	×	×	×	×	×	Contemporary, comprehensive

while table 1.2 summarizes detailed reviews of specific topical areas. Table 1.3 summarizes articles in which various investigators have reviewed the status of their own work and lists proceedings of conferences devoted to shock compression of solids. There is no single textbook covering any appreciable fraction of the subject matter of the field. Chapters of interest in published volumes include Chapter XI of Zel'dovich and Raizer [66Z1] and Chapter VIII of Cristescu [67C4]. Other tutorial treatments are: [68D5, 73D6, 73T3, 73F1, 73J1, 73O2, 76H2, 77S2]. Popularized accounts of the subject have been published by Duvall [63D2] and Linde and Crewdson [69L1].

A very complete, recently updated, tabulation of high-pressure shock-compression data is given by van Thiel et al. [77V1] and data from the Los Alamos Scientific Laboratory have been tabulated by McQueen and coworkers [69G2, 70M1]. Keeler [72K3] has derived and tabulated isothermal compression curves using shock-compression data. Hugoniot elastic limit data have been tabulated by Jones and Graham [71J4], and data on shock-induced phase transitions are included in a review of the subject by Duvall and Graham [77D6].

Lee Davison and R.A. Graham, Shock compression of solids

Doran [63D1] (27, 57) Deal [62D1] (26, 27) Technique In-depth reviews of specific topical areas*

Adadurov et al. [73A1] (12, 55)	Nunziato et al. [74N4] (108, 217)
Chemical physics	Viscoelastic behaviour
Mineev and Ivanov [76M4] (19, 148)	Bedford et al. [76B4] (54, 83)
Shock-induced electrical polarizations	Composites
Xakushev [78Y1] (16, 65) (Technique	Нетттапп [76Н3] (26, 54)
Keeler [71K2] (20, 44)	Herrmann and Nunziato [73H2] (158, 81)
Styris and Duvall [7033] (22, 75)	Herrmann [69H1] (54, 101)
Kormer [68K5] (25, 178)	Wilkins [64W1] (53, 17)
Electrical conductivity	Hopkins [61H1] (14, 136)
	Viscoplastic behavior
Royce [71R3] (13, 40)	
Magnetic properties	Duvall [73D5] (32, 21)
	Royce [71R2] (11, 11)
Kormer [68K5] (25, 178)	Royce [71R1] (16, 44)
Optical properties	Al'tshuler and Bakanova [69A2] (12, 45)
	Knopoff [63K2, 63K3] (18, 30; 16, 35)
Davison and Stevens [71D1] (88, 68)	Equations of state
Spall fracture	
	Al'tshuler [78A6] (10, 46)**
Herrmann and Hicks [73H1] (34, 32)	Duvall and Graham [77D6] (57, 405)
Wilkins [64W1] (53, 17)	Hayes [77H3] (49, 28)
Spod son lost ingthods	Jones and Graham [7114] (12, 102)
	Dremin and Breusov [68D4] (11, 92)
Graham and Asay [78G5] (36, 218)	Phase transitions
Grady [77G2] (50, 91)	
Fowles [73F2] (75, 60)	Grady [77G2] (50, 91)
Keeler [71K1] (30, 45)	Stöffler [7254] (63, 256)
Doran [63D1] (27, 57)	Ahrens [72A1] (30, 124)
Deal [62D1] (26, 27)	Ahrens et al. [69A1] (74, 67)
(50)0)[,(10)], (1	garefudaço

* Numbers in parentheses indicate number of pages and number of references cited, respectively. * Added in proof. We have been unable to cite this recent review elsewhere in the text.

Geophysics

Leslie [73L1] (76, 100)

Zukas [66Z2] (19, 61) Appleton [65A3] (6, 59) Dieter [62D2] (16, 100) Metallurgical effects and metalworking

Crossland and Williams [70C2] (21, 95) Otto and Mikesell [6701] (44, 65)